$$
L_{1}=\left(\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)
$$

$$
L_{2}=\left(\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right)
$$

$$
L_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+\mu\left(\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right)
$$

Find the area of the hidden rectangle!

Hint: It is in surd form

$$
L_{7}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)
$$

$$
L_{6}=\left(\begin{array}{l}
0 \\
3 \\
6
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)
$$

$$
L_{4}=\left(\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)
$$

$$
L_{5}=\left(\begin{array}{l}
6 \\
0 \\
3
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
0 \\
6
\end{array}\right)
$$

- Understand 3D vector notation for equations
- Find the angle between lines
- Find points of intersection
- Find lengths of line segments

Teacher notes

- This isn't a starter activity. It is recommended as an investigation for consolidating or revising the understanding of vectors in C4.
- You may find it useful to recap $\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$
- Encourage students to identify perpendicular and parallel lines, before looking for points of intersection
- There are several 'red herrings': perpendicular gradients on skew lines, intersecting lines but not enough to make a rectangle, parallel lines ...
- Lines $1,2,6 \& 8$ form a rectangle.
- The corners are (-2,2,3), (-1,0,3), (-3,-1,0) \& (-4,1,0)
- The sides are $\sqrt{ } 5$ and $\sqrt{ } 14$, giving an area of $\sqrt{ } 70$
- You could use 3D plotting software or graphical calculators or a smartphone app to check the results.

