Trigonometry & Differentiation
What you are given and what you need to know in C3
FORMULAE FOR EDEXCEL
2013/14

Trigonometry & Differentiation

What you are given and what you need to know in C3

Exact Values of trigonometric functions

x° (deg)	x° (rad)	sin	cos	tan
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3
90	$\frac{\pi}{2}$	1	0	-
180	π	0	-1	0

Rules and facts

1.
$$\sin^2 x + \cos^2 x = 1$$

$$2. \ \text{Tan } x = \frac{\sin x}{\cos x}$$

3. Cosec
$$x = \frac{1}{\sin x}$$

$$4. \operatorname{Sec} x = \frac{1}{\cos x}$$

5. Cot
$$x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

Applying these rules

Dividing (1) by $\sin^2 x$ will give you: $1 + \cot^2 x = \csc^2 x$

Dividing (1) by $\cos^2 x$ will give you: $\tan^2 x + 1 = \sec^2 x$

Trigonometry & Differentiation | 2013/14

Addition Formulae*

1.
$$sin(A+B) = sinAcosB + cosAsinB$$

2.
$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

3.
$$cos(A+B) = cosAcosB - sinAsinB$$

4.
$$cos(A-B) = cosAcosB + sinAsinB$$

5.
$$tan(A+B) = \frac{(tanA+tanB)}{1-tanAtanB}$$

5.
$$tan(A+B) = \frac{(tanA+tanB)}{1-tanAtanB}$$

6. $tan(A-B) = \frac{tanA-tanB}{1+tanAtanB}$

Finding the Double Angle Formulae, by applying these rules

Substituting in A for B in (1) will give you:

$$\sin 2A = 2\sin A\cos A$$

Substituting in A for B in (3) will give you:

$$\cos 2A = \cos^2 A - \sin^2 A$$

If you then substitute in $\sin^2 x = 1 - \cos^2 x$, you get:

$$\cos 2A = 2\cos^2 A - 1$$

Alternatively, if you substitute in $\cos^2 x = 1 - \sin^2 x$, you get: $\cos 2A = 1 - 2\sin^2 A$

$$\cos 2A = 1 - 2\sin^2 A$$

Substituting in A for B in (5) will give you: $tan 2A = \frac{2tan A}{1 - tan^2 A}$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

R addition Formulae

If you are given the form $a\sin\theta + b\cos\theta$: use $R\sin(\theta + \alpha)$

Where a,b & R are positive and $\,\alpha$ is acute

Factor Formulae*

$$\operatorname{Sin} A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

Sin A - sin B =
$$2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

Trigonometry & Differentiation | 2013/14

Differentiation

Chain rule

If y = f(u) and u = g(x), then:

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

Product rule

If y = u(x)v(x), where u and v are functions of x then:

$$\frac{dy}{dx} = u \times \frac{dv}{dx} + v \times \frac{du}{dx}$$

Quotient rule*

If $y = \frac{u(x)}{v(x)}$, where u and v are functions of x then:

$$\frac{dy}{dx} = \frac{v \times \frac{du}{dx} - u \times \frac{dv}{dx}}{v^2}$$

Exponential Functions

If $y = e^{f(x)}$, then

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

Functions of Ln(x)

If $y = \ln [f(x)]$, then

$$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

Function in terms of y

If
$$x=f(y)$$
, then $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$

Trigonometric differentiation

y=f(x)	$\frac{dy}{dx}$	In formula book
Sin x	Cos x	
Cos x	-Sin x	
Tan (kx)	k sec ² (kx)	*
Cosec x	-cosec x cot x	*
Sec x	Sec x tan x	*
Cot x	-cosec ² x	*