Integration & Differentiation

What you are given and what you need to know in C4

FORMULAE FOR EDEXCEL

2013/14

Integration & Differentiation

What you are given and what you need to know in C4

Recap of C3 facts

Exact Values of trigonometric functions

x° (deg)	x° (rad)	sin	COS	tan
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	-
180	π	0	-1	0

Rules and facts

$$1. \quad \operatorname{Sin}^2 \mathbf{x} + \cos^2 \mathbf{x} = 1$$

2. Tan x =
$$\frac{\sin x}{\cos x}$$

3. Cosec
$$x = \frac{1}{\sin x}$$

4. Sec
$$x = \frac{1}{\cos x}$$

5. Cot x =
$$\frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

Applying these rules

Dividing (1) by $\sin^2 x$ will give you: $1 + \cot^2 x = \csc^2 x$

Dividing (1) by $\cos^2 x$ will give you: $\tan^2 x + 1 = \sec^2 x$

 $(\boldsymbol{*})$ means the rule is given in the Edexcel Formula book

1

Differentiation

Parametric Equations

If y = f(t) and x = g(t), then:

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{dy}{dt} \div \frac{dt}{dx}$$

Implicit Differentiation

When f(x,y) = g(x,y), differentiate implicitly: that is differentiate w.r.t. y and include dy/dx. The solution can simplified where necessary.

Example: $y^2 = xy + x + 2$

(Hint: Use the product rule for xy)

$$2y\frac{dy}{dx} = x \times 1 \times \frac{dy}{dx} + y \times 1 + 1$$

a×

$$\frac{d(a^x)}{dx} = a^x \ln(a)$$

Proof of a^x

Start with

Take logs of both sides

$$\ln(y) = x \ln(a)$$

 $\ln(y) = \ln(a^x)$

 $y = a^x$

Differentiate implicitly $\frac{1}{v} \times \frac{dy}{dx} = \ln(a)$

Rearrange and substitute for y

$$\frac{d(a^x)}{dx} = a^x \ln(a)$$

(*) means the rule is given n the Edexcel Formula book

Integration

Rules for Integration

Integration by substitution

There is no simple rule for integration by substitution, you must follow these steps:

• You'll be given an integral which is made up of two functions of x.

$$\int 4x e^{(x^2-1)} dx$$

- Substitute *u* for one of the functions of x to give function which is easier to integrate. $Choose \ u = x^2 - 1, to \ give \ e^u$
- Next, find $\frac{du}{dx}$, and rewrite it so that dx is on its own.

$$\frac{du}{dx} = 2x, so \ xdx = \frac{1}{2}du$$

• Rewrite the original integral in terms of *u* and *du*.

Substituting in for xdx:
$$\int 4e^u x dx = \int 2e^u du$$

• Integrate and substitute back for *u* at the end.

$$2\int e^{u}du = 2e^{u} + c = 2e^{(x^{2}-1)} + c$$

Integration by parts*

When u=f(x) and v=g(x), then:

$$\int u \frac{dv}{dx} \, dx = uv - \int v \frac{du}{dx} \, dx$$

Choose your u and v functions carefully to make the integral easier.

(*) means the rule is given in the Edexcel Formula book

Volume of revolution: Cartesian

$$V = \pi \int_{x_1}^{x_2} y^2 \, dx$$

This describes the volume generated when the curve of y = f(x) from x_1 to x_2 is rotated 360° about the x-axis.

Volume of revolution: Parametric

$$V_x = \pi \int_{a}^{b} y^2 \frac{dx}{dt} dt$$

This describes the volume generated when the curve is defined by its parametric form (x(t), y(t)) in the interval (a,b) is rotated 360° about the x-axis.

Both equations for the volumes of revolution can be adjusted for rotation about the y-axis by substituting x for y and vice versa.

(*) means the rule is given n the Edexcel Formula book

Standard Integrals you should know:

$$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c \quad \text{where } n \neq 1$$

Exponential functions

$$\int e^{x} dx = e^{x} + c$$

$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + c$$

Other functions

$$\int \frac{1}{x} dx = \ln|x| + c$$
$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + c$$
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

This rule leads to these standard integrals (*):

$$\int cosec(x) \, dx = -\ln|cosec(x) + \cot(x)| + c$$
$$\int sec(x) \, dx = \ln|sec(x) + \tan(x)| + c$$
$$\int cot(x) \, dx = \ln|sin(x)| + c$$

(*) means the rule is given in the Edexcel Formula book

Using functions and derivatives

$$\int \frac{du}{dx} f(u) \, dx = f(u) + c$$
$$\int (n+1)f'(x) \, [f(x)]^n \, dx = \, [f(x)]^{n+1} + c$$

Trigonometric Integration

Basics

Learn these facts and do not confuse them with the rules for differentiation.

$$\int \sin(x) \, dx = -\cos(x) + c$$
$$\int \cos(x) \, dx = \sin(x) + c$$

Summary (+ constant)

y=f(x)	$\int f(x)dx$	In formula book
Cos x	Sin x	
Sin x	-Cos x	
sec ² (kx)	$\frac{1}{k}$ tan (kx)	*
$\tan(\mathbf{x})$	ln sec(x)	*
$\cot(\mathbf{x})$	$ln \sin(x) $	*
sec (x)	$ln \sec(x) + \tan(x) $	*
cosec(x)	$-ln \operatorname{cosec}(x) + \operatorname{cot}(x) $	*

Integration & Differentiation | 2013/14

(*) means the rule is given n the Edexcel Formula book

Applying these facts

By the chain rule:	$\frac{d[\sin(ax+b)]}{dx} = a\cos(ax+b)$
Hence:	$\int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b) + c$
It follows that:	$\int \sin(ax+b) dx = -\frac{1}{a} \cos(ax+b) + c$
By the quotient rule:	$\frac{d[\tan(x)]}{dx} = \sec^2(x)$
Hence:	$\int \sec^2(x) dx = \tan(x) + c$
Also:	$\int \sec^2(kx) dx = \frac{1}{k} \tan(kx) + c (*)$
Thus:	$\int \sec^2(ax+b) dx = \frac{1}{a}\tan(ax+b) + c$

7