Integration \& Differentiation

What you are given and what you need to know in C4

Integration \& Differentiation

What you are given and what you need to know in C4

Recap of C3 facts

Exact Values of trigonometric functions

\mathbf{x}° (deg)	$\mathbf{x}^{\circ}(\mathbf{r a d})$	\sin	$\boldsymbol{\operatorname { c o s }}$	$\boldsymbol{\operatorname { t a n }}$
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	-
180	π	0	-1	0

Rules and facts

1. $\operatorname{Sin}^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1$
2. $\operatorname{Tan} \mathrm{x}=\frac{\sin x}{\cos x}$
3. $\operatorname{Cosec} \mathrm{x}=\frac{1}{\sin x}$
4. $\operatorname{Sec} \mathrm{x}=\frac{1}{\cos x}$
5. $\operatorname{Cot} \mathrm{x}=\frac{1}{\tan x}=\frac{\cos x}{\sin x}$

Applying these rules

Dividing (1) by $\sin ^{2} \mathrm{x}$ will give you: $1+\cot ^{2} \mathrm{x}=\operatorname{cosec}^{2} \mathrm{x}$
Dividing (1) by $\cos ^{2} \mathrm{x}$ will give you: $\tan ^{2} \mathrm{x}+1=\sec ^{2} \mathrm{x}$

Differentiation

Parametric Equations

If $y=f(t)$ and $x=g(t)$, then:

$$
\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{\mathrm{dy}}{\mathrm{dt}} \div \frac{\mathrm{dt}}{\mathrm{dx}}
$$

Implicit Differentiation

When $f(x, y)=g(x, y)$, differentiate implicitly: that is differentiate w.r.t. y and include $d y / d x$. The solution can simplified where necessary.

Example: $y^{2}=x y+x+2$
(Hint: Use the product rule for xy)

$$
2 y \frac{d y}{d x}=x \times 1 \times \frac{d y}{d x}+y \times 1+1
$$

a^{x}

$$
\frac{d\left(a^{x}\right)}{d x}=a^{x} \ln (a)
$$

Proof of a^{x}

Start with

$$
y=a^{x}
$$

Take logs of both sides

$$
\ln (\mathrm{y})=\ln \left(\mathrm{a}^{\mathrm{x}}\right)
$$

$$
\ln (\mathrm{y})=\mathrm{x} \ln (\mathrm{a})
$$

Differentiate implicitly

$$
\frac{1}{y} \times \frac{d y}{d x}=\ln (a)
$$

Rearrange and substitute for y

$$
\frac{d\left(a^{x}\right)}{d x}=a^{x} \ln (a)
$$

Integration

Rules for Integration

Integration by substitution

There is no simple rule for integration by substitution, you must follow these steps:

- You'll be given an integral which is made up of two functions of x.

$$
\int 4 x e^{\left(x^{2}-1\right)} d x
$$

- Substitute u for one of the functions of x to give function which is easier to integrate.

$$
\text { Choose } u=x^{2}-1, \text { to give } e^{u}
$$

- Next, find $\frac{d u}{d x}$, and rewrite it so that dx is on its own.

$$
\frac{d u}{d x}=2 x, \text { so } x d x=\frac{1}{2} d u
$$

- Rewrite the original integral in terms of u and $d u$.

$$
\text { Substituting in for } x d x: \int 4 e^{u} x d x=\int 2 e^{u} d u
$$

- Integrate and substitute back for u at the end.

$$
2 \int e^{u} d u=2 e^{u}+c=2 e^{\left(x^{2}-1\right)}+c
$$

Integration by parts*

When $u=f(x)$ and $v=g(x)$, then:

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

Choose your u and v functions carefully to make the integral easier.

Volume of revolution: Cartesian

$$
V=\pi \int_{x_{1}}^{x_{2}} y^{2} d x
$$

This describes the volume generated when the curve of $y=f(x)$ from x_{1} to x_{2} is rotated 360° about the x -axis.

Volume of revolution: Parametric

$$
V_{x}=\pi \int_{a}^{b} y^{2} \frac{d x}{d t} d t
$$

This describes the volume generated when the curve is defined by its parametric form $(\mathrm{x}(\mathrm{t})$, $y(t))$ in the interval (a, b) is rotated 360° about the x-axis.

Both equations for the volumes of revolution can be adjusted for rotation about the y -axis by substituting x for y and vice versa.

Standard Integrals you should know:

$$
\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c \quad \text { where } \mathrm{n} \neq 1
$$

Exponential functions

$$
\begin{gathered}
\int e^{x} d x=e^{x}+c \\
\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+c
\end{gathered}
$$

Other functions

$$
\begin{gathered}
\int \frac{1}{x} d x=\ln |x|+c \\
\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+c \\
\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c
\end{gathered}
$$

This rule leads to these standard integrals (*) :

$$
\begin{gathered}
\int \operatorname{cosec}(x) d x=-\ln |\operatorname{cosec}(x)+\cot (x)|+c \\
\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+c \\
\int \cot (x) d x=\ln |\sin (x)|+c
\end{gathered}
$$

Using functions and derivatives

$$
\begin{gathered}
\int \frac{d u}{d x} f(u) d x=f(u)+c \\
\int(n+1) f^{\prime}(x)[f(x)]^{n} d x=[f(x)]^{n+1}+c
\end{gathered}
$$

Trigonometric Integration

Basics

Learn these facts and do not confuse them with the rules for differentiation.

$$
\begin{aligned}
& \int \sin (x) d x=-\cos (x)+c \\
& \int \cos (x) d x=\sin (x)+c
\end{aligned}
$$

Summary (+ constant)

$\mathbf{y}=\mathbf{f}(\mathbf{x})$	$\int \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}$	In formula book
$\operatorname{Cos} \mathrm{x}$	$\operatorname{Sin} \mathrm{x}$	
$\operatorname{Sin} \mathrm{x}$	$-\operatorname{Cos} \mathrm{x}$	
$\sec ^{2}(\mathrm{kx})$	$\frac{1}{k} \tan (\mathrm{kx})$	$*$
$\tan (\mathrm{x})$	$\ln \|\sec (x)\|$	$*$
$\cot (\mathrm{x})$	$\ln \|\sin (x)\|$	$*$
$\sec (\mathrm{x})$	$\ln \|\sec (x)+\tan (x)\|$	$*$
$\operatorname{cosec}(\mathrm{x})$	$-\ln \|\operatorname{cosec}(x)+\cot (x)\|$	

Applying these facts

By the chain rule: $\quad \frac{d[\sin (a x+b)]}{d x}=\operatorname{acos}(a x+b)$

Hence:

$$
\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c
$$

It follows that:

$$
\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+c
$$

By the quotient rule: $\quad \frac{d[\tan (x)]}{d x}=\sec ^{2}(x)$

Hence:

$$
\int \sec ^{2}(x) d x=\tan (x)+c
$$

Also:

$$
\int \sec ^{2}(k x) d x=\frac{1}{\mathrm{k}} \tan (k x)+c\left(^{*}\right)
$$

Thus:

$$
\int \sec ^{2}(a x+b) d x=\frac{1}{\mathrm{a}} \tan (a x+b)+c
$$

