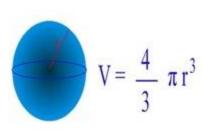

Volume of Solids


Name: _____

To be able to calculate the volume of spheres, pyramids and cones Calculators allowed

SPHERE

Example

Notes

A sphere has radius 5cm. Find the volume.

$$r = 5$$

$$V = 4 \times \Pi \times 5^3 \div 3$$

$$V = 4 \times \Pi \times 125 \div 3$$

$$V = 500 \Pi \div 3 = 523.60 (2dp)$$

QUESTIONS

1.
$$r = 4$$

$$V = 4 \times \Pi \times 4^3 \div 3$$

$$V = 4 \times \Pi \times 64 \div 3$$

$$V = 256 \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

2. r = 10

$$V = 4 \times \Pi \times 10^3 \div 3$$

$$V = 4 \times \Pi \times 1000 \div 3$$

$$V = \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

$$3. r = 7$$

$$V = 4 \times \Pi \times 7^3 \div 3$$

$$V = 4 \times \Pi \times \underline{\qquad} \div 3$$

$$V = \underline{\hspace{1cm}} \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

4. r = 6

$$V = 4 \times \Pi \times 3 \div 3$$

$$V = 4 \times \Pi \times \underline{\hspace{1cm}} \div 3$$

$$V = \underline{\hspace{1cm}} \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

$$5. r = 11$$

$$V = 4 \times \Pi \times 3 \div$$

$$V = 4 \times \Pi \times \underline{\qquad} \div \underline{\qquad}$$

$$V = \underline{\hspace{1cm}} \Pi \div \underline{\hspace{1cm}}$$

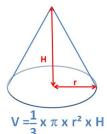
$$V = \underline{\hspace{1cm}} (2dp)$$

6. r = 8

$$V = \underline{\hspace{1cm}} \times \Pi \times \underline{\hspace{1cm}}^3 \div \underline{\hspace{1cm}}$$

$$V = \underline{\hspace{1cm}} \times \Pi \times \underline{\hspace{1cm}} \div \underline{\hspace{1cm}}$$

$$V = \underline{\hspace{1cm}} \Pi \div \underline{\hspace{1cm}}$$


$$V =$$
 (2dp)

Extension

Find the volume of a sphere with radius 13cm

CONE

Example

A cone has radius 5cm and height 4cm. Find the volume.

$$r = 5, h = 4$$

$$V = \Pi \times 5^2 \times 4 \div 3$$

$$V = \frac{1}{2} \times \pi \times r^2 \times H$$
 $V = \Pi \times 25 \times 4 \div 3$

$$V = 100 \Pi \div 3 = 104.72 \text{ (2dp)}$$

Hints

The $\Pi \times r^2$ bit comes from the area of the base

Sketch the cone if you have trouble remembering which measurement goes where.

QUESTIONS

1. r = 4, h = 7

$$V = \Pi \times 4^2 \times 7 \div 3$$

$$V = \Pi \times 16 \times 7 \div 3$$

$$V = 112 \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

2.
$$r = 10$$
, $h = 7$

$$V = \Pi \times 10^2 \times 7 \div 3$$

$$V = \Pi \times 100 \times 7 \div 3$$

$$V = \underline{\hspace{1cm}} \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

3.
$$r = 9$$
, $h = 2$

$$V = \Pi \times 9^2 \times 2 \div 3$$

$$V = \Pi \times \underline{\hspace{1cm}} \times 2 \div 3$$

$$V = \underline{\hspace{1cm}} \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

$$4. r = 6, h = 12$$

$$V = \Pi \times \underline{\hspace{1cm}^2 \times 12 \div 3}$$

$$V = \Pi \times \underline{\hspace{1cm}} \times 12 \div 3$$

$$V = \underline{\hspace{1cm}} \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

$$5. r = 11, h = 5$$

$$V = \Pi \times \underline{\hspace{1cm}}^2 \times 5 \div 3$$

$$V = \Pi \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \div 3$$

$$V = \underline{\hspace{1cm}} \Pi \div 3$$

$$V =$$
 (2dp)

6.
$$r = 11$$
, $h = 8$

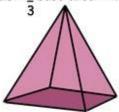
$$V = \Pi \times \frac{2}{3}$$

$$V = \Pi \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \div 3$$

$$V = \underline{\hspace{1cm}} \Pi \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

Extension


Find the volume of a cone with radius 13cm and height 10cm

PYRAMID

Example

A pyramid has a 5cm square base and height 7cm. Find the volume.

volume = 1 base area x height Base = $5 \times 5 = 25$

Base =
$$5 \times 5 = 25$$

$$H = 7$$

$$V = 25 \times 7 \div 3$$

$$V = 175 \div 3$$

$$V = \underline{58.33}(2dp)$$

Hints

The base can be any 2D shape, you will need to adjust your calculation to fit.

Sketch the pyramid if you have trouble visualizing the base shape.

QUESTIONS

1 .h = 5

Base = 4 by 6 rectangle

Base =
$$4 \times 6 = 24$$

$$V = 24 \times 5 \div 3$$

$$V = 120 \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

2. h = 8

Base = 7 by 4 rectangle

Base =
$$7 \times 4 =$$

$$V = \times 8 \div 3$$

$$V = \underline{} \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

3. h = 10

Base = 9 by 4 triangle

Base =
$$9 \times 4 \div 2 =$$

$$V = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \div 3$$

$$V = \underline{\hspace{1cm}} \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

4. h = 5

Base = 12 by 6 triangle

Base =
$$12 \times _{---} \div 2 = _{---}$$

$$V = \underline{} \times \underline{} \div 3$$

$$V = \underline{\hspace{1cm}} \div 3$$

$$V = \underline{\hspace{1cm}} (2dp)$$

Extension

Find the volume of a pyramid with height 10cm and a triangular base. The triangle is right *angled with sides 3,* 4, 5cm