Inverse Functions

When you find an inverse function you are just reversing what has happened. An inverse function is denoted $f^{-1}(x)$.

For example, the function f(x) = 2x has the inverse $f^{-1}(x) = x \div 2$

1. Complete this table

f(x)	f ⁻¹ (x)	True or False
x + 5	x - 5	
x ²	x ÷ 2	
2x + 7	$\frac{x-7}{2}$	
(x + 4) ²	(vx) + 4	

2. For any False answers to Q1 write the correct $f^{-1}(x)$

3. What happens if you work out: (a) $ff^{-1}(x)$? (b) $f^{-1}f(x)$?

An inverse function basically changes going from x to y, with going from y to x. This means there is an easier way to find inverse functions – just reverse what is going on. You can do this by using y instead of f(x):

Example: f(x) = 5x - 12

Step 1. Replace <i>f</i> (<i>x</i>) with y	y = 5x - 12
Step 2. Rearrange to make x the subject	y + 12 = 5x
	$\frac{y+12}{5} = x$
Step 3. Switch the x and y	$y = \frac{x+12}{5}$
Step 4. Replace y with $f^{-1}(x)$	$f^{-1}(x) = \frac{x+12}{5}$

4. Find the inverse for each of these functions:

(a) $f(x) = x + 5$	(b) $f(x) = 3x + 8$	(c) $f(x) = 5x - 3$	(d) $f(x) = 4(x+9)$
(e) $f(x) = x^2 + 6$	(f) $f(x) = (x - 7)^2$	(g) $f(x) = 10 - x$	(h) $f(x) = \sqrt{5x + 11}$

www.mathssandpit.co.uk/blog