Inverse Functions

When you find an inverse function you are just reversing what has happened. An inverse function is denoted $f^{-1}(x)$.

For example, the function $f(x)=2 x$ has the inverse $f^{-1}(x)=x \div 2$

1. Complete this table

$\mathbf{f (x)}$	$\mathbf{f}^{-1}(\mathbf{x})$	True or False
$x+5$	$x-5$	
x^{2}	$x \div 2$	
$2 x+7$	$\frac{x-7}{2}$	
$(x+4)^{2}$	$(\sqrt{ })+4$	

2. For any False answers to $Q 1$ write the correct $f^{-1}(x)$
3. What happens if you work out:
(a) $\mathrm{ff}^{-1}(\mathrm{x})$?
(b) $\mathrm{f}^{-1 \mathrm{f}}(\mathrm{x})$?

An inverse function basically changes going from x to y, with going from y to x. This means there is an easier way to find inverse functions - just reverse what is going on. You can do this by using y instead of $f(x)$:

Example: $f(x)=5 x-12$
Step 1. Replace $f(x)$ with y
$y=5 x-12$
Step 2. Rearrange to make x the subject

$$
y+12=5 x
$$

$$
\frac{y+12}{5}=x
$$

Step 3. Switch the x and y

$$
y=\frac{x+12}{5}
$$

Step 4. Replace y with $f^{-1}(x)$

$$
f^{-1}(x)=\frac{x+12}{5}
$$

4. Find the inverse for each of these functions:
(a) $f(x)=x+5$
(b) $f(x)=3 x+8$
(c) $f(x)=5 x-3$
(d) $f(x)=4(x+9)$
(e) $f(x)=x^{2}+6$
(f) $f(x)=(x-7)^{2}$
(g) $f(x)=10-x$
(h) $f(x)=V(5 x+11)$
