Small steps in Direct Proportion

Each question takes you through how to form a direct proportion equation, gradually decreasing the support.

Example	
\mathbf{W} is directly proportional to V . When $\mathbf{W}=\mathbf{4 2 ,} \mathbf{V = 7}$. Find \mathbf{W} when $\mathrm{V}=\mathbf{1 0}$.	
Basic statement:	$\mathrm{W} \propto \mathrm{V}$
Proportion equation:	$\mathrm{W}=\mathrm{k} \mathrm{V}$
Substitute to find $\mathrm{k}:$	$42=\mathrm{k} \times 7$
	$\mathrm{k}=42 \div 7=6$
State equation:	$\mathrm{W}=6 \mathrm{~V}$
Use equation to solve the problem: $\mathrm{V}=10$	$\mathrm{~W}=6 \times 10=\mathbf{6 0}$

Questions: Fill in the gaps

1. T is directly proportional to C . When $\mathrm{T}=14, \mathrm{C}=3.5$. Find T when $\mathrm{C}=8$.

Basic statement:
Proportion equation:
Substitute to find k:

State equation:
Use equation to solve the problem: $C=8$
$C=8$
T = k C
$14=k \times 3.5$
$k=14 \div 3.5=4$
$T=4 C$
$\mathrm{C}=8 \quad \mathrm{~T}=4 \times \ldots=$ \qquad
2. x varies directly with t. When $x=15, t=6$. Find x when $t=6$.

Basic statement:
Proportion equation:
$x \propto t$

Substitute to find k:
$15=k \times 6$
$k=15 \div 6=2.5$
$x=2.5 t$
State equation:
$t=6$
$\mathrm{x}=$ \qquad $=$ \qquad
3. A is in direct to proportion to B. When $A=-12, B=4$. Find A when $B=9$.

Basic statement:
$A \propto B$
Proportion equation:
$A=k B$
Substitute to find k:
$-12=k \times 4$
$k=-12 \div 4=$
State equation:
$A=\ldots B$
$B=9 \quad A=\ldots \times$
4. J varies in proportion to M . When $\mathrm{J}=2, \mathrm{M}=20$. Find J when $\mathrm{M}=13$.

Basic statement:
$J \propto M$
Proportion equation:
$J=k M$
Substitute to find k:
$2=k \times 20$
$\mathrm{k}=$ \qquad
\qquad $=$
State equation:
$\mathrm{J}=$ \qquad
Use equation to solve the problem: $\mathrm{M}=13 \quad \mathrm{~J}=$ \qquad
5. P is directly proportional to Q . When $\mathrm{P}=360, \mathrm{Q}=90$. Find P when $\mathrm{Q}=15$.

Basic statement:
Proportion equation:
$P \propto Q$
Substitute to find k:
$P=k Q$
$\bar{k}=$ $=k \times$
$\mathrm{k}=\ldots \div-=$
State equation:
$\mathrm{P}=$ \qquad
Use equation to solve the problem: $\mathrm{Q}=\ldots \quad \mathrm{P}=$
6. m is in proportional to r. When $m=1 / 2, r=1 / 4$. Find m when $r=3 / 4$.

Basic statement:
$m \propto r$
Proportion equation:
$\mathrm{m}=$ \qquad
Substitute to find k :
_ $=k \times$
$\overline{\mathrm{k}}=$ \div __ $=$
State equation:
Use equation to solve the problem: \qquad $=$ - \qquad $=$ \qquad
7. y is directly proportional to x . When $\mathrm{y}=72, \mathrm{x}=48$. Find y when $\mathrm{x}=15$.

Basic statement:
Proportion equation:
Substitute to find k :
State equation:
Use equation to solve the problem:
8. E varies directly with to G . When $\mathrm{E}=-18, \mathrm{G}=-3$. Find E when $\mathrm{G}=7$.

Basic statement:
Proportion equation:
Substitute to find k :
State equation:
Use equation to solve the problem:
Now consider how to use this structure to solve other direct proportion questions.
Extension: How can you adapt this technique for problems such as " y is proportional to the square of x . When y is $75, \mathrm{x}$ is 5 . Find the value of y when x is 7 "

Small steps in Direct Proportion: Solutions

1. 32
2. 15
3. -27
4. 1.3
5. 60
6. 1.5
7. 22.5
8. 42
