

It's not square!

Aim: To check if you were fully paying attention when you were taught how to manipulate the 3D equation of a line

Steps

1. Write down the co-ordinates of a point $\left(x_{1}, y_{1}, z_{1}\right)$, where $x_{1} \neq y_{1} \neq z_{1} \neq 0$. Label it A.
2. Write down the co-ordinates of a different point $\left(x_{2}, y_{2}, z_{2}\right)$, where $x_{2} \neq y_{2} \neq$ $z_{2} \neq 0$. Label it B.
3. Calculate $|A B|$
4. Find the equation of the line $\left(L_{1}\right)$ going through A and B
5. Find the equation of a perpendicular line (L_{2}) going through A
6. Find the equation of a perpendicular line (L_{3}) going through B
7. C is a point on L_{2} such that $|A B|=|A C|$
8. D is a point on L_{3} such that $|A B|=|B D|$
9. Calculate |CD|
10. Find the equation of the line (L_{4}) going through C and D

Reflection

- Review your answers to steps 9 and 10.
- Use you results to justify whether or not you have created a square.
- Which was the critical step in determining whether you would end up with a square?

Extension

Would it be possible to construct the equations of the edges of an equilateral triangle in 3D space? What limitations might you have to make?

