

It's not square!

Aim: To check if you were fully paying attention when you were taught how to manipulate the 3D equation of a line

Steps

- Write down the co-ordinates of a point (x₁,y₁,z₁), where x₁ ≠ y₁≠ z₁≠ 0. Label it A.
- 2. Write down the co-ordinates of a different point (x_2, y_2, z_2) , where $x_2 \neq y_2 \neq z_2 \neq 0$. Label it B.
- 3. Calculate |AB|
- 4. Find the equation of the line (L_1) going through A and B
- 5. Find the equation of a perpendicular line (L_2) going through A
- 6. Find the equation of a perpendicular line (L_3) going through B
- 7. C is a point on L_2 such that |AB| = |AC|
- 8. D is a point on L_3 such that |AB|=|BD|
- 9. Calculate |CD|
- 10. Find the equation of the line (L_4) going through C and D

Reflection

- Review your answers to steps 9 and 10.
- Use you results to justify whether or not you have created a square.
- Which was the critical step in determining whether you would end up with a square?

Extension

Would it be possible to construct the equations of the edges of an equilateral triangle in 3D space? What limitations might you have to make?