Tag Archives: geometry

349. Circumcircle Investigation

The A-level textbook we use has a nice picture of the circumcircle of a triangle and a definition, plus a brief description of how to work through them. For those who are pondering what a circumcircle is, click on the image or link below

Image credit: WolframMathWorld

I’ll just stick to basic vocabulary in this post, rather than the formal circumcentre and circumradius.

Back to the book – not exactly inspiring or memorable stuff!

I looked at the class and off the cuff changed the lesson plan.


  • Plain paper
  • Pencil
  • Ruler
  • Compasses
  • Calculator

Step 1

Draw a decent size triangle on the paper. Label the corners A,B,C.

Step 2

Using geometrical constructions, find the centre of the circle that your triangle fits in. Check by actually drawing the circle

Step 3

Discuss what techniques gave the best results – hopefully you’ll have perpendicular bisectors. There is a nice comparison between bisecting the angles (which some students will do) and bisecting the sides. The angle bisectors always cross inside the triangle, the side bisectors don’t.

Step 4

Randomly generate co-ordinates for A, B, & C. Get the students to pick them and then they can’t moan if the calculations are awful.

Step 5

Discuss how you are going to find the centre and radius of the circumcircle. We decided on:

  • Only use two sides
  • Find the midpoints
  • Find the gradients and hence perpendicular gradients
  • Generate the equations of the lines through the midpoint
  • Find where they intersect
  • Use the point and one corner to find the radius

Step 6

Review their methods, looking for premature rounding in questions. I’m still instilling an appreciation for the accuracy of fractions and surds, over reaching for the calculator.

Step 7

This is how my solution looked – I numbered the picture and the steps so students could follow the logic. I was answering on one page projected on screen.


341. Dragon Bridge

Here is a little starter picture for you:

This is the ‘Pont y Ddraig’ at the marina in Rhyl, in North Wales. What mathematical questions could be inspired by this?

‘Pont y Ddraig’ means Dragon Bridge. Find out more about the bridge here

336. Geometry Snacks

If you are looking for a very last minute gift for that special Mathematician in your life, or you have Christmas money to spend, may I recommend “Geometry Snacks” by Ed Southall (@solvemymaths) and Vincent Pantaloni (@panlepan)?

It is a nearly pocket sized book of geometry puzzles whose construct of simple, elegant problems can decieve the unwary into thinking the solutions are easy. This is a book for those who embrace mathematical rigour, rather than repetitious guesswork.

In fact, forget buying it for someone else – get one just for yourself!

Geometry Snacks is published by Tarquin (ISBN: 9 781911 093701)

265. Book of the term!

We may only be a few weeks into the summer term, but I can safely say this is my book of the term. A gently inspiring, pick up a pencil and relax book.


‘This is not a Maths book’ by Anna Weltman (RRP £9.99) takes all the beautiful ideas we maths teachers wish we could use more often and collects them into a wonderful book.


The pages are full colour and the paper quality is excellent – almost tactile. And the best bit is that no-one can tell you off for doing students’ work or wasting your time making that wall display just right. It’s your book … just for you … you can be as possessive and OCD about the colouring pencils as you want!

It would make a good end of term prize too – a bit different to the usual geometry set or calculator. If you are a forward planner, you could even buy this book for your mathematical someone in a departmental ‘Secret Santa’.